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What's on my ESCAIDE badge?

e Artificial Intelligence advanced senior expert at
Research Institutes of Sweden (RISE), responsible for
Precision Medicine and for the Life Sciences in RISE Al

e Professor in Intelligent Software Services at
The Royal Institute of Technology (KTH), Stockholm

e Associate editor of Eurosurveillance



Al: It's...

..about learning, or it's not Al

..not only machine learning, but...
..also about learning machines
..weak or strong, but...
..actually all of it's still weak...

..50 what's the fuss?



Al Systems Think (sic) Differently
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"You cannot make a machine to think for you". This is
a commonplace that is usually accepted without question. It
will be the purpose of this paper to guestion it.



AI Education: Turing’s Component List

* Memory (chronological log)

* 'Indexes of experience’ (event-based log)

* Special features observed in the indexes already used
* Experience of outcome (+/- weights)

e Crude rules of thumb (heuristics) for outcome
classification (supervised), over time replace by
sophisticated rules (unsupervised)

e Random noise
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What can Learning Machines Learn?

Spatial distributions

- People movement during an epidemic

- Information diffusion about an epidemic

- Geographical spread, probabilistic models

Networks and graphs

- Social networks

- Preferential attachment and strata

- Hubs, bridges, giant components,...

How to learn

How to communicate



Data Visualisation without AI, no probs

Super-Spreaders ;.,-"’f

Boman, M.; Ghaffar, A.; Bridge

Liljeros, F. and

Stenhem, M. Social

network visualization as

a contract tracing tool -2

AAMAS 2006 Q
| Super-Sink

Figure 1: MRSA App plot for MRSA Dataset Stock-
holm 2004, with the x-axis mapped onto In Degree
and the y-axis mapped onto Out Degree, at t = 2000
days.



The AI Question (Vapnik 1990)

What must one know a priori about an
unknown functional dependency in order to
estimate it on the basis of observations?

Old answer: Almost everything

New answer: Some general properties of
the set of functions to which the unknown
dependency belongs



AI Prediction meets Statistics

True condition

Total
. Condition positive Condition negative
population
Predicted . -
. True positive, False positive,
condition
Power Type | error

Predicted positive

condition = Predicted
False negative,

condition True negative
. Type Il error
negative
True positive rate (TPR), Recall, Sensitivity, False positive rate (FPR), Fall-out,
probability of detection = %‘% probability of false alarm = 5 éoi?ili?ieon nzg‘give

: Specificity (SPC), Selectivity, True negative rate (TNR)
. : > False negative
False negative rate (FNR), Miss rate = s ramon poslitive _ 3 True negative
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Wikipedia: Positive and negative predictive wvalues

_ 2 Condition positive
Prevalence = 2 Total population

Positive predictive value (PPV), Precision =

___ >Truepositve
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False omission rate (FOR) =
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11
Recall ™ Precision



Prediction - A Recent Example

Journal of Biomedical Informatics
Volume 87, November 2018, Pages 50-59

» 4

ELSEVIER

Predicting of anaphylaxis in big data EMR by exploring machine
learning approaches

Isabel Segura-Bedmar 2 & =, Cristobal Colén-Ruiz 2, Miguél Angel Tejedor-Alonso » ¢, Mar Moro-Moro ©

Show more

https://doi.org/10.1016/j.jbi.2018.09.012 Get rights and content
Highlights
. Identification of anaphylaxis cases in records by machine learning
classifiers.
. Linear classifiers achieve very high performance (F1=95%).
. CNN provides slightly better performance, but with higher computation time.

. The use of undersampling does not improve the results.



Representation and Classification

Classifiers

Document representation SVM

Bag of words

> -

Logistic
Regression

Bag of
words (tf-idf)

Random

Eoreet Prediction of

anaphylaxis
cases

Average of word

Word embeddings

EMRS [-olEme

Model Bag of centroids

K-NN

Multinomial

NB

Matrix of word
embeddings




Perceptron Convergence Theorem
(Minsky and Papert 1988)

If a set of examples is learnable (100% correct
classification, cf. gold standard), the perceptron
learning rule will find the necessary weights

* in a finite number of steps
* independent of the initial weights

The rule does gradient descent search in weight
space, so if a solution exists, gradient descent is
guaranteed to find an optimal solution for any 1-
layer neural network

C.R. Dyer, Univ of Wisconsin (remix)



Sentiment Analysis

Methods
Volume 129, 1 October 2017, Pages 50-59

-

ELSEVIER

Large-scale machine learning of media outlets for understanding
public reactions to nation-wide viral infection outbreaks

Sungwoon Choi @ P&, Jangho Lee 2=, Min-Gyu Kang ° &, Hyeyoung Min ¢ &, Yoon-Seok Chang © & &, Sungroh
Yoon® fRA=®

Show more

https://doi.org/10.1016/j.ymeth.2017.07.027 Get rights and content
Highlights
. The emotional public responses to a nation-wide outbreak of Middle East

respiratory syndrome (MERS) in Korea was analyzed.
. Massive media outlet data was collected during the outbreak.

. An intriguing loop of information transfers between the media and the public
was discovered.

. This method would be helpful for alleviating the unnecessary fear and
overreaction of the public regarding infectious diseases.



Visualization of Sentiment for MERS
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However, no more death case was reported,
and the public fear vanished.
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The number of deaths started to decrease,
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Three death cases were reported after a hiatus,
and the public fear started to grow again.

and so did the public fear.
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Smart Foodborne Iliness Tracking

an ‘ Dlgltal MediCiﬂe www.nature.com/npjdigitalmed

ARTICLE OPEN
Machine-learned epidemiology: real-time detection of
foodborne illness at scale

Adam Sadilek’, Stephanie Caty?, Lauren DiPrete®, Raed Mansour (", Tom Schenk Jr(@”, Mark Bergtholdt®, Ashish Jha®®,
Prem Ramaswami' and Evgeniy Gabrilovich'

Machine learning has become an increasingly powerful tool for solving complex problems, and its application in public health has
been underutilized. The objective of this study is to test the efficacy of a machine-learned model of foodborne illness detection in a
real-world setting. To this end, we built FINDER, a machine-learned model for real-time detection of foodborne illness using
anonymous and aggregated web search and location data. We computed the fraction of people who visited a particular restaurant
and later searched for terms indicative of food poisoning to identify potentially unsafe restaurants. We used this information to
focus restaurant inspections in two cities and demonstrated that FINDER improves the accuracy of health inspections; restaurants
identified by FINDER are 3.1 times as likely to be deemed unsafe during the inspection as restaurants identified by existing
methods. Additionally, FINDER enables us to ascertain previously intractable epidemiological information, for example, in 38% of
cases the restaurant potentially causing food poisoning was not the last one visited, which may explain the lower precision of
complaint-based inspections. We found that FINDER is able to reliably identify restaurants that have an active lapse in food safety,
allowing for implementation of corrective actions that would prevent the potential spread of foodborne illness.

npj Digital Medicine (2018)1:36; doi:10.1038/541746-018-0045-1



Data: It's...

..never enough for machine learning
..almost never BIG

..always noisy: humans make noise
..not always best to impute

..a terrible idea to ask organisations and companies
to put their data into common repositories

...about cleaning and cleaning and cleaning and:

in the end you might be able to do some Al
programming



AI Programming (Minsky 1961)

Search — through some large space of solution attempts
Pattern-recognition — restricting to appropriate methods
Learning — by directing search according to experience
Planning — by analysing and further directing search

Induction — for general purpose intelligent machines



Isn’t it very close to Epidemiology?

Search
Pattern-recognise
Learn

Plan

Induce



Case-Based Reasoning, yes?

Search
Pattern-recognise
Learn
Plan

Induce

The Strand
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Search (McCulloch & Pitts 1943)

“"There is the genetical or evolutionary search
by which a combination of genes is looked
for, the criterion being survival value. The
remarkable success of this search confirms to
some extent the idea that intellectual activity
consists mainly of various kinds of search.”

upon reading Turing (1937)



AI Programming (Minsky 1961)

Search — through some large space of solution attempts
Pattern-recognition — restricting to appropriate methods
Learning — by directing search according to experience
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Pattern Recognition (Minsky 1960)

* Classify problem situations into categories
associated with the machine’s methods

e Extract heuristically significant features of objects

* Define useful properties and make them resistant
to noise

e Combine many properties to form a recognition
system



Normalisation and Dimensionality Reduction
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The Curse of Dimensionality
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AI Programming (Minsky 1961)

Search — through some large space of solution attempts
Pattern-recognition — restricting to appropriate methods
Learning — by directing search according to experience
Planning — by analysing and further directing search

Induction — for general purpose intelligent machines



Learning

The basic learning heuristic is to use successful
methods

The advanced learning heuristic is meta-level
learning: learning how to learn

(e.g., a program-writing program)
Success-reinforced models are averaging models
and leads to stimulus-response-type reasoning



Stimulus-Response Learning

e A machine receives stimuli via its sensors or receptors
e A machine acts or performs actions via its effectors

* That an action is a response to a stimulus means they co-
occur; to add a particular time, does not add to
expressive power

* Since both stimulus and response may be complicated,
their relation is complicated, even in this simplest case

e Reinforcement learning lets a machine mirror itself in the
results of its actions



Simple Learning Limitations

XOR is a function that cannot be
14 - learned by a perceptron:

let + correspond to output 1
and — to output 0, then XOR

| I is not linearly separable

Simple learning machines are (digital) automata, whereas
some organic processes are analog, like the human

respiratory system (nervous response to blood CO, levels)



Analogue Distributed Neuromorphic Learners

PHYSICAL REVIEW E 98, 052101 (2018)

Editors’ Suggestion

Modeling reservoir computing with the discrete nonlinear Schriodinger equation

Simone Borlenghi,! Magnus Boman,?? and Anna Delin'+*
' Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Electrum 229, SE-16440 Kista, Sweden
2KTH Royal Institute of Technology, EECS/SCS, Electrum 229, SE-16440 Kista, Sweden
3RISE SICS, Electrum 230, SE-16429 Kista, Sweden
4Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden

® (Received 26 April 2018; published 1 November 2018)

We formulate, using the discrete nonlinear Schrodinger equation (DNLS), a general approach to encode and
process information based on reservoir computing. Reservoir computing is a promising avenue for realizing
neuromorphic computing devices. In such computing systems, training is performed only at the output level by
adjusting the output from the reservoir with respect to a target signal. In our formulation, the reservoir can be
an arbitrary physical system, driven out of thermal equilibrium by an external driving. The DNLS is a general
oscillator model with broad application in physics, and we argue that our approach is completely general and does
not depend on the physical realization of the reservoir. The driving, which encodes the object to be recognized,
acts as a thermodynamic force, one for each node in the reservoir. Currents associated with these thermodynamic
forces in turn encode the output signal from the reservoir. As an example, we consider numerically the problem
of supervised learning for pattern recognition, using as a reservoir a network of nonlinear oscillators.

DOI: 10.1103/PhysRevE.98.052101
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Pattern-recognition — restricting to appropriate methods
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Planning

e Costly to replan over and over again
e Time constraints: Real-time? Online? Batch?

* Learning how to plan, or planning how to
learn?

e Can an Al system break rules?

® Norm- rather than rule-regulation?
e Weak Al vs. Strong Al
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Induction (Elman 1990)

"... by themselves, the simple learning systems are
useful only in recurrent situations; they cannot cope
with any significant novelty. Nontrivial performance is
obtained only when learning systems are
supplemented with classification or pattern-
recognition methods of some inductive ability”.

Strategy of deep learning (Jordan 1986, Elman 1990):
Extract heuristically significant features of objects



Emotion Recognition as an Example of Al

Unpublished work, with Abubakr Karali



Emotion Recognition

® The Paul Ekman (FACS) paradigm vs. machine
learning

e The umami of emotions
® The dream of transfer learning

e Serendipitous synergy
e Ethics, bias, and fear of Al
* [jie to me, not forgetting the Chinese ghost



Traditional Facial Action Coding Units 2
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Traditional Facial Action Coding Units 1
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A Systemic Model of Sensemaking
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A Systemic Model of Future Sensemaking
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https://www.ncbi.nlm.nih.gov/pubmed/28838300#
https://www.ncbi.nlm.nih.gov/pubmed/28838300#

Learning Machines for Internet Psychiatry
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Learning Machine system overview

Percepton ——

Feature extraction, anomaly
detection / attention,
clustering, prediction, ...

Action / response

Reasoning ——

Higher-order concept
extraction, inference,
explanation, hypothesis
generation, ...

Interaction

Presentation, feedback,
knowledge exchange,
exploration, communication,

visualisation, ... Reasoning

—»  Perception Interaction
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Video / images
Text
Sensor data
Data in motion Oniline learning
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Data processing engines
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~4.500 variables, n=5.218, complete data
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Prediction, Extraction and Mining - Example

SCIENTIFIC REPQRTS

“EN' Machine Learning methods for
Quantitative Radiomic Biomarkers

. Chintan Parmar®3#4*, Patrick Grossmann®5*, Johan Bussink®, Philippe Lambin3 &
Hugo J. W. L. Aerts**5
Received: 02 April 2015
Accepted: 17 July 2015 © Radiomics extracts and mines large number of medical imaging features quantifying tumor
Published: 17 August 2015 : phenotypic characteristics. Highly accurate and reliable machine-learning approaches can drive the
: success of radiomic applications in clinical care. In this radiomic study, fourteen feature selection
. methods and twelve classification methods were examined in terms of their performance and
stability for predicting overall survival. A total of 440 radiomic features were extracted from pre-
i treatment computed tomography (CT) images of 464 lung cancer patients. To ensure the unbiased
¢ evaluation of different machine-learning methods, publicly available implementations along with
reported parameter configurations were used. Furthermore, we used two independent radiomic
: cohorts for training (n=310 patients) and validation (n=154 patients). We identified that Wilcoxon
: test based feature selection method WLCX (stability =0.84 +0.05, AUC=0.6510.02) and a
classification method random forest RF (RSD =3.52%, AUC=0.66 1-0.03) had highest prognostic
performance with high stability against data perturbation. Our variability analysis indicated that
. the choice of classification method is the most dominant source of performance variation (34.21%
: of total variance). Identification of optimal machine-learning methods for radiomic applications is a
¢ crucial step towards stable and clinically relevant radiomic biomarkers, providing a non-invasive way
¢ of quantifying and monitoring tumor-phenotypic characteristics in clinical practice.



Feature Selection and Classification
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Figure 2. Heatmap depicting the predictive performance (AUC) of feature selection (in rows) and
classification (in columns) methods. It can be observed that RE, BAG and BY classification methods and
feature selection methods WLCX, MRMR and MIFS shows relatively high predictive performance in many
cases.



Ethics

* Interpretability
* Transparency
e Accountability

e \What black boxes do you use?



Interpretability

We gratefully acknowledge support from
the Simons Foundation
and member institutions
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The Mythos of Model Interpretability

Zachary C. Lipton

(Submitted on 10 Jun 2016 (v1), last revised 6 Mar 2017 (this version, v3)) Current browse context:

cs.LG
Supervised machine learning models boast remarkable predictive capabilities. But can you trust your model? Will it work in deployment? What else can it tell you about the world? We want models <prev | next>
to be not only good, but interpretable. And yet the task of interpretation appears underspecified. Papers provide diverse and sometimes non-overlapping motivations for interpretability, and new | recent | 1606

offer myriad notions of what attributes render models interpretable. Despite this ambiguity, many papers proclaim interpretability axiomatically, absent further explanation. In this paper, we seek
to refine the discourse on interpretability. First, we examine the motivations underlying interest in interpretability, finding them to be diverse and occasionally discordant. Then, we address
model properties and techniques thought to confer interpretability, identifying transparency to humans and post-hoc explanations as competing notions. Throughout, we discuss the feasibility

Change to browse by:

cs

cs.Al
and desirability of different notions, and question the oft-made assertions that linear models are interpretable and that deep neural networks are not. s.CV
cs.NE

Comments: presented at 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY Sta‘stat ML

Subjects:  Machine Learning (cs.LG); Artificial Intelligence (cs.Al); Computer Vision and Pattern Recognition (cs.CV); Neural and Evolutionary Computing (cs.NE); Machine Learning (stat.ML)
Cite as: arXiv:1606.03490 [cs.LG] References & Citations
(or arXiv:1606.03490v3 [cs.LG] for this version) « NASA ADS



The Largest Problem for AI: Talent

he role of the Virologist
ublic health

ata.sharing VS pre-publication of results
udies of vira| diversity: probably too far off

7 rve|.||ance of animal-to-human spillovers: probably trivial
urveillance of mammalian livestock and vectors

Radical approaches to (financing of) clinical diagnostics

Virus research

Evolution of fitness and transmissibility during human adaptation
Barriers to changes of tropism and infection pattern
Barriers to vector competence

Vaccinology, vaccine vectors, clinical trials

Christian Drosten: Spend money on training and labs

John Nkengasong: 1.500 epidemiologists for 1.2B Africans



Take Home Message

Don’t believe the hype!
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